
AE265 { 2000 { MIDTERM ANSWER SHEET
Instructor: Thomas H. Pulliam

1. Using the Taylor Table approach on the �nite di�erence approximation of the 1st derivative�
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(a) Find the coe�cients a; b; and c in terms of � which minimize the error ert. (Points:4)
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(b) Find the resulting expression for ert, in terms of � and �nd the value of � which further

minimizes the error. (Points:4)

ANSWER Problem #1 From the Taylor table
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the following equation has been constructed to maximize the order of accuracy
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The Taylor series error of this di�erence scheme is

ert =

�
�b

1

6
+ c�2

1

2

�
�x2

 
@3u

@x3

!
j

=
�(3� � 2)

6(2� � 1)
�x2

 
@3u

@x3

!
j

This shows that the scheme is second order for arbitrary �.

To further minimize the error, let � = 2
3 , thereby eliminating the above term and forcing the error

out to the next term
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Now a third order method.
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2. Find the expression for the modi�ed wave number of the scheme in terms of �x and k. Cast the
result in terms of sin0s and cos0s and where indicated use series expansion to identify the accuracy
of the scheme.

(a) (�xu)j = (uj�2 � 4uj�1 + 4uj+1 � uj+2) =(4�x) and identify the accuracy of the scheme. (Points:4)

(b) (�xxxxu)j = (uj�2 � 4uj�1 + 6uj � 4uj+1 + uj+2) =�x4 and identify the accuracy of the scheme.
(Points:4)

(HINT: �xxxxe
ikj�x = (k�)4eikj�x, �nd (k�)4 = k4 +O(�xp), that is, don't try to take the 4th

root..)

ANSWER Problem #2a

We apply uj = eikj�x to both sides and get

�
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�
= eikj�x

�
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�
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which give us

ik� = i
(4sin(k�x)� sin(2k�x))
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Expanding the sin function gives

k� = k +
1

3
k3�x2 + � � �

showing a 2nd order approximation to the �rst derivative.

ANSWER Problem #2b

We apply uj = eikj�x to both sides and get

�
(k�)4eikj�x

�
= eikj�x

�
e�2ik�x � 4e�ik�x + 6� 4e+ik�x + e2ik�x

�
=�x4

which give us

(k�)4 =
(6� 8cos(k�x) + 2cos(2k�x))

�x4

Expanding the cos function gives

(k�)4 = k4 �
1

6
k6�x2 + � � �

showing a 2nd order approximation to the fourth derivative.
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3. Consider the predictor- corrector method

~un+1 = un�1 + 2h(~u0)n

un+1 = un + h(~u0)n+1

applied to the representative equation

u0 = �u+ ae�t

Note!!!! I have put in more to this than in the midterm. Here I added to particular

solution part in the question and answers. To get what was asked for on the Midterm

set a = 0 and eliminate the Q(E) parts

(a) Identify the characteristic and particular operators as discussed in class, [P (E)] and ~Q(E) and
�nd the characteristic polynomial P (E). (Points:3)

(b) Find the �'s for this method (HINT: it is a 2 root method). (Points:2)

(c) Identify the principal and spurious roots and justify your choice. (Points:2)

(d) Find er� and identify the order of this method. (Points:2)

(e) Find the particular solution,u1. (Optional:Points:1)

(f) Determine the stability of the method, i.e., conditions on �h.(Optional:Points:2)

(Note: The � in (~u0)n for the predictor step)

ANSWER Problem #3a

For the predictor-corrector combination

~un+1 = un�1 + 2h(~u0)n

un+1 = un + h(~u0)n+1

Applying the time-marching scheme to the representative equation

du

dt
= �u+ ae�t

results in the following equation set

~un+1 = un + 2h
�
�~un + ae�hn

�
un+1 = un + h

�
�~un+1 + ae�h (n+1)

�

Introducing the di�erence operator, E; the equation set may be expressed in matrix form as

"
E � 2�h �E�1

��hE E � 1

# "
~un
un

#
=

"
2h
hE

#
ae�hn

The results for [P (E)] and ~Q(E) are obviously from the previous equation.

The characteristic polynomial equals the determinant of the matrix

P (E) = E2 � (1 + 2�h)E + �h
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The particular polynomial, Q(E); for the �nal family un (as opposed to the intermediate family ~un)
is given by

Q(E) = det

"
E � 2�h 2h
��hE hE

#
= hE2

ANSWER Problem #3b

The characteristic polynomial is

P (�) = �2 � (1 + 2�h)� + �h

giving
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ANSWER Problem #3c
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An easy way to check for the principal and spurious roots is to let h = 0. For the principal root
� = 1 is consistent with e�h for h = 0 and the spurious root will not equal 1. In this case �1 = 1
and �2 = 0 identifying the two types.

ANSWER Problem #3d

Expanding the square root for the principal root

�1 = 1 + �h+ �2h2 + � � �

and the transient error is

er� = �
1

2
(�h)2 +O(h3)

a �rst order method.

ANSWER Problem #3e

The exact numerical solution to u0 = �u+ ae�t is then

un = c1�
n
1 + c2�

n
2 + ae�hn

Q(e�h)

P (e�h)

which give us the Particular Solution

u1 = ae�hn �
he2�h

e2�h � (1 + �h)e�h + �h

ANSWER Problem #3f

Determine the stability of the method, i.e., conditions on �h. This is a little hard to do from the
de�nition of the � roots directly. The basic condition is j�1j � 1 and we also have to check the
spurious root j�2j � 1. Probably the best way to proceed is to plot the � roots in both the complex-�
and complex-� planes as in Chapter 7 of the notes. From a matlab program we have

From the complex-� plane �gure one can pick o� the stability bound as approximately j�hj < 2
3 .

Functional analysis con�rms it.
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Midterm 1999 Question 3: Two Roots
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Figure 1: The complex-� plane plot of j�j = 1
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Midterm 1999 Question 3: Two Roots
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Figure 2: The complex-� plane plot for Real-� and Pure Imaginary-�
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